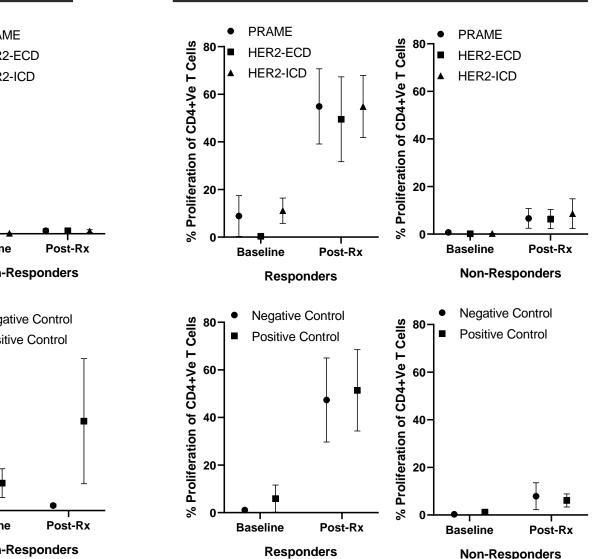
BriaCell AACR 2019 #4998

Development of a personalized off-the-shelf whole-cell immunotherapy for breast cancer

Vivekananda (Vivek) Sunkari¹, Sanne Graeve¹, George E. Peoples², Charles L. Wiseman¹, William V. Williams¹, and <u>Markus D. Lacher^{1,*}</u> ¹BriaCell Therapeutics Corp., Berkeley, CA, USA; ²Cancer Insight, LLC; San Antonio, TX, USA; *presenting author

ABSTRACT


BACKGROUND cont'd Mechanism of Action (MoA) Phase I/IIa (NCT03066947) ("monotherapy") SV-BR-1-GM acts as antigen-presenting cells for primed T cells (Lacher et al., Front Immunol. 2018 May 15;9:776 and Figure 1). **Responders with tumor regression have a higher propensity to induce T cell responses** SV-BR-1-GM (Bria-SV-BR-1-GM expresses breast IMT) cells directly cancer antigens which are Analysis on subset of patients: activate CD4+ and taken up by dendritic cells and Responders (tumor regression) – subjects 01-002, 05-002; Non-responders – subjects 02-003, 03,001, 04-002, 04-005, 04-006 CD8+ T cells presented to CD4+ and CD8+ T cells which thereafter may CD8+ CD4+ a tumor-directed Figure 3. Increased T cell proliferation following mmune response inoculation with SV-BR-1-GM in Responders. SV- PRAME PRAME • PRAME BR-1-GM expresses the cancer/testis antigen PRAME HER2-ECD HER2-ECD HER2-ECD HER2-ECD and HER2 (ERBB2), see Table 1. Patient PBMCs were HER2-ICD HER2-ICD ▲ HER2-ICD HER2-ICD stimulated with overlapping sets of PRAME and HER2 peptides. T cell proliferation was assessed via CellTracer, a fluorescent dye with diminishing fluorescence following cell division. Substantially higher percentages of PRAME and HER2-specific Bria-IMT[™] CD4+ T cells at post-Rx compared to baseline time points for responders (tumor regression) compared to non-responders. However, PBMCs of responders also demonstrated increased proliferation when SV-BR-1-GM secretes GM Post-Rx Baseline Post-Rx Baseline Post-Rx Baseline stimulated with negative control (actin) and positive CSF, which supports antigen presentation by dendritic cells Non-Responders control (viral antigens) peptides, suggesting that Responder responders have a higher tendency to develop T Figure 1. Model of Proposed MoA of SV-BR-1-GM cell responses per se compared to non-responders. Negative Control Negative Control Negative Control Negative Control Shown are mean values + SDs. ECD, extracellular Positive Control **Positive Control Positive Control** Positive Control **METHODS** domain of HER2: ICD, intracellular domain of HER2, **Working Model** Patient Treatment Tumor regression requires: • SV-BR-1-GM is grown in simple tissue culture media under GMP conditions. In earlier stages of development (for most patients on 1. HLA matching to SV-BR-1-GM (Table 2) NCT03066947), SV-BR-1-GM was formulated for each patient freshly [in 2. Ability to mount cellular immune response essence, cells were serum-starved for 24 hours, irradiated (20,000 cGy), (DTH and *ex vivo* T cell proliferation) Post-R Post-Rx resuspended in Lactated Ringer's solution] then shipped at 2-8 °C to the clinical sites where it was injected intradermally within 24 hours from completion of the formulation process. Since January 2019, we have been using a frozen formulation (irradiated SV-BR-1-GM cryopreserved in NCT03328026 (pembrolizumab combo) BACKGROUND biocompatible freeze medium) Regimen: Table 3: Patient Characteristics and Best Response for the SV-BR-1-GM Regimen + Pembrolizumab • Pre-dose cyclophosphamide (300 mg/m²) 2-3 days prior to SV-BR-1-GM inoculation ble 4: Serum Biomarkers – decrease in antigen-presenting cells including HLA class II expression. HLA Chara DTH skin test, then inoculation of ~20-50 million irradiated SV-BR-1-GM Age sponding subject (06-001) bject Allele Ethnicity cells inoculated intradermally, split into 4 inoculations (x2 upper back, x2 Matches thighs). 62 yo WF 4-005 0 2+ • Interferon- α 2b intradermally (10,000 IU in each inoculation site) 2±1 66 yo WF 0 and 4 ± 1 days following SV-BR-1-GM inoculation. 63 vo WF SYNE4 XDH 0 • NCT03328026 only: Pembrolizumab (Keytruda; 200 mg IV) during one -005 64 yo WF 3 2+ TBX15 XPOT ZNF80 of the interferon- α 2b visits. TFAP2A 6-004 59 yo WF TNPO1 Cycles: 06-001 73 yo WF TRPS1 • NCT03066947 ("monotherapy"): Treatment is performed every 2 weeks * A 17% decrease in target lesion diameters wa TTC6 Figure 4. Delayed-Type Hypersensitivity (DTH) for the first month and then every month. UBR5 UGT2B11 • NCT03328026 (with pembrolizumab): Treatment every 3 weeks. DTH erythema DTH reaction at skin test (1 million irradiated SV-UGT2B28 BR-1-GM cells) sites in arm (A-erythema, B-VTCN1 <u>E</u> 2000induration) and at "therapeutic" inoculation sites (2x - 04-007 RESULTS upper back, 2x thighs) (C-largest erythema among 41500-X 1000-× 1000-ERBB2, MIEN1, PGAP3, STARD3: on "HER2 amplicon" - ● 05-005 all 4 sites; D-largest induration among all 4 sites). Black markers indicate "monotherapy", red 500 -- 06-004 Table 2: HLA Matching Predicts Tumor Shrinkage markers pembrolizumab combination therapy Combined Pilot Phase I and Phase I/IIa (NCT03066947), both "monotherapy" time points multiple sites of metastatic breast cancer (Wiseman and Kharazi, 2006; The Breast Journal, Volume 12 Number 5, 2006 475–480). Most pronounced reaction in subject 06-001 who Patients (n) HLA Tumor experienced tumor regression. **CONCLUSIONS AND HYPOTHESES** Shrinkage Match 40% ≥2 • The SV-BR-1-GM regimen +/- pembrolizumab is able to induce an effective immune response and tumor regression in advanced breast cancer patients 22% 18 ≥1 (ClinicalTrials.gov NCT03328026), 6 subjects have thus far been dosed. Tumor regression was observed in one subject and stable o In absence of pembrolizumab, HLA matching and the ability to launch cellular immune response (ex vivo and DTH) appear necessary for tumor regression to occur. • Addition of pembrolizumab can compensate for lack of an HLA match with tumor regression seen in heavily pre-treated metastatic breast cancer. 0% disease in another.

BACKGROUND: Whole-cell cancer immunotherapies induce cancer-specific immune responses with the goal of long-term immune surveillance and remission. Non-replicating (irradiated) cancer cells are used to stimulate the immune system to recognize tumor-associated antigens and target tumor cells. Whole-cell immunotherapies have achieved regression of bulky, macroscopic tumors, but clinical trials have shown limited efficacy. SV-BR-1-GM is an HLA class I and II expressing, GM-CSF secreting breast cancer cell line. In a pilot clinical trial, an almost complete response of widely metastatic breast cancer was seen in a patient who allele-matched SV-BR-1-GM at HLA-DRB3. A follow-up Phase I/IIa clinical trial is ongoing in subjects with advanced breast cancer. **RESULTS:** Extensive in vitro analysis demonstrated that SV-BR-1-GM cells not only have features of breast cancer cells but surprisingly also features of dendritic cells, the latter especially because of the expression of both HLA class I and class II complexes. SV-BR-1-GM cells "loaded" with a peptide known to bind to histocompatibility complexes containing HLA-DR_β3, as allele-encoded by SV-BR-1-GM, induced the activation of a CD4+ T cell clone specific for the peptide-DR_β3 complex, suggesting functionality of SV-BR-1-GM's HLA II machinery. To date, 23 [corrected from submitted abstract stating 24] subjects have been inoculated with the SV-BR-1-GM regimen in a Phase I/IIa trial with no adverse immediate hypersensitivity responses to low-dose inoculations with test cells (SV-BR-1 or SV-BR-1-GM). DTH response was evaluable in 18 patients with 72% developing DTH. The patient with the most pronounced DTH response, 01-002, also had a clinical response with regression of 20 of 20 lung metastases. Two other patients also had evidence of tumor regression. 6 patients were assessed for anti-SV-BR-1 antibodies. Whereas antibodies were found in sera of all patients, higher titers were measured in post-treatment compared to baseline samples. Patients who responded to the SV-BR-1-GM regimen with tumor regression matched SV-BR-1-GM at least at one HLA allele. CONCLUSIONS AND OUTLOOK: SV-BR-1-GM cells may act as antigen-presenting cells directly activating HLA matching patient T cells. To include more patients predicted to derive clinical benefit from this whole-cell approach, SV-BR-1 cells are being engineered to, among others, overexpress exogenous HLA alleles. The goal is to develop a set of cell lines suitable for personalized off-the-shelf immunotherapy. The strategy will result in cell lines that match ~90% of the US population at 2 or more HLA alleles. • SV-BR-1-GM is a whole-cell, GM-CSF expressing targeted immunotherapy prepared from a breast cancer cell line with features of • In an initial, pilot Phase I clinical trial with 4 evaluable subjects, one "Special Responder" experienced prompt, widespread regression at • In a recently completed Phase I/IIa clinical trial for advanced breast cancer (ClinicalTrials.gov NCT03066947) with 23 subjects dosed with SV-BR-1-GM, tumor regression was observed in three subjects, all matching with SV-BR-1-GM at least at one HLA allele. In a ongoing Phase I/IIa clinical trial for advanced breast cancer testing SV-BR-1-GM in combination with pembrolizumab (Keytruda)

/	ABCA12	AP000322.53	3 AZIN1	CCL28	CSN3	ELF5	FOXI1	HIST1H4H	KIT	KRTAP21-1	MIA	NQO1	PGAP3	SCGB1D2	SLCO1B7
	ABCC11	APCDD1L	BTN1A1	CENPN	CST9	ELOVL3	GJC3	IGFBP5	KRT15	LALBA	MIEN1	OBP2B	PIGK	SCGB2A2	SPAG1
	ACSM1	APOD	C10orf90	CEP55	CYP4Z1	EN1	GLRA3	IL17B	KRT17	LGALS7	MMP27	OIP5	PIP	SCGB3A1	SPINK14
	AKR1B15	ARHGAP40	C1orf64	CHIT1	DCAF10	ERBB2	GLYATL1P3	3 IL22RA2	KRT19	LGALS7B	MRGPRX2	OXGR1	PLAC1	SDR16C5	SPINK8
	AKR1C2	ARHGEF38	C2orf82	CLDN8	DCD	ESR1 ??	GLYATL2	INTS7	KRT25	LMX1B	MS4A18	OXTR	PNLIPRP3	SERHL2	ST8SIA6
	ALDH3B2	ARPC5L	C5orf46	CLEC3A	DGAT2L6	FABP7	GPR88	IRX1	KRT27	MAB21L1	MTHFD2	PAK1	PRAME	SFRP1	STAC2
	ALG8	ATP13A5	C6orf223	CMA1	DHRS2	FABP9	GSTM5	IRX2	KRT28	MAP1LC3C	MUCL1	PAX3	PRSS51	SHB	STARD3
	ALOX15B	ATP6V1B1	CABYR	COL8A1	DUSP4	FAM180B	GSTT2B	IRX3	KRT71	MATN4	MYB	PBK	PTHLH	SHISA2	STC2
	ALX4	AWAT2	CARD18	CSN1S1	EFHD1	FAM196B	HIST1H2AE	IRX5	KRT79	MGAT4A	MYEOV	PDCD6	RFC5	SLC28A3	SULT1C3
	ANKRD30A	AZGP1	CBX2	CSN2	EIF3H	FAM25C	HIST1H2BO	6 KIF2C	KRT81	MGP	NPY2R	PDRG1	RSF1	SLC35A2	SYCP2

• Table 1: SV-BR-1-GM expresses breast tissue and breast cancer antigens (by RNA-seq)

RESULTS

imor cteristics			Cycles on Monotherapy	Cycles on Combo Study
ER	PR	Prior Therapies	Study – Best Response on Monotherapy	– Best Response on Combo
+	+	4 chemo 2 hormonal	5 - PD	3 – PD
+	+	3 chemo 1 hormonal	3 - PD	2 – Hospice
+	+	2 chemo 1 hormonal	0	3 – PD
0	0	4 chemo	3 - PD	2 – Hospice
+	+	3 chemo 3 targeted 3 biol. 5 hormonal	0	7 – SD
+	0	8 chemo, 1 biological	4 - SD	6 – SD*
as no	ted for	this patient. Bi-dimension	al measurements o	of all lesions showed a 43% de
DTH	induratio	n Inoculation s	ite largest erythema	D Inoculation site largest indur
	•	3000 - E E	^	

	04-005	04-007	04-008	05-005	06-004	06-001
Baseline CEA	11.6	17.7	2.6	1.3	0.2	167.8
Baseline 15-3	47	748	22	16.2	93.4	164.4
Initial Eval CEA	*	*	*	*	1.55	48.15
Initial Eval 15-3	*	*	*	*	114.4	114.9
* not available						

